Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions.

نویسندگان

  • Margarita Antonov
  • Malek Mazzawi
  • Paul L Dubin
چکیده

Critical conditions for coacervation of poly(dimethyldiallylammonium chloride) (PDADMAC) with bovine serum albumin were determined as a function of ionic strength, pH, and protein/polyelectrolyte stoichiometry. The resultant phase boundaries, clearly defined with this narrow molecular weight distribution PDADMAC sample, showed nonmonotonic ionic strength dependence, with the pH-induced onset of coacervation (at pH(phi)) occurring most readily at 20 mM NaCl. The corresponding onset of soluble complex formation, pH(c), determined using high-precision turbidimetry sensitive to changes of less than 0.1% transmittance units, mirrored the ionic strength dependence of pH(phi). This nonmonotonic binding behavior is attributable to simultaneous screening of short-range attraction and long-range repulsion. The similarity of pH(c) and pH(phi) was explained by the effect of salt on protein binding, and consequently on the number of bound proteins relative to that required for charge neutralization of the complex, a requirement for phase separation. Expansion of the coacervation regime with chitosan, a polycation with charge spacing similar to that of PDADMAC, could be due to either the charge mobility or chain stiffness of the former. The pH(phi) versus I phase boundary for PDADMAC correctly predicted entrance into and egress from the coacervation region by addition of either salt or water. The ability to induce or suppress coacervation via protein/polyelectrolyte stoichiometry r was found to be consistent with the proposed model. The results indicate that the conjoint effects of I, r, and pH on coacervation could be represented by a three-dimensional phase boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity.

The effect of polyelectrolyte binding affinity on selective coacervation of proteins with the cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), was investigated for bovine serum albumin/β-lactoglobulin (BSA/BLG) and for the isoforms BLG-A/BLG-B. High-sensitivity turbidimetric titrations were used to define conditions of complex formation and coacervation (pH(c) and pH(...

متن کامل

Shear-induced phase separation in polyelectrolyte/mixed micelle coacervates.

A quantitative study of the shear-induced phase separation of a polycation/anionic-nonionic micelle coacervate is presented. Simultaneous rheology and small-angle light scattering (SALS) measurements allow the elucidation of micrometer-scale phase separation under flow in three coacervate solutions. Below 18 degrees C, all three of the coacervate solutions are optically clear Newtonian fluids a...

متن کامل

Combined effect of spin speed and ionic strength on polyelectrolyte spin assembly.

Polyelectrolyte spin assembly (PSA) of multilayers is a sequential process featuring adsorption of oppositely charged polyelectrolytes from dilute solutions undergoing spin-coating flow. Here, we report on the dependence of PSA multilayer buildup of poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride) on solution ionic strength and spin speed. We observed that at a given spin spee...

متن کامل

Early stage kinetics of polyelectrolyte complex coacervation monitored through stopped-flow light scattering.

Polyelectrolyte complexes (PECs) between poly(acrylic acid) (PAA) and poly(diallyldimethylammonium chloride) (PDADMAC), a model system forming coacervate particles via electrostatic interaction at pH 10, were prepared by a stopped-flow (SF) fast mixing technique at different mixing charge ratios (z) and ionic strengths. Both PEC final morphologies prepared by either SF or manual one-shot mixing...

متن کامل

Phase separation in symmetric mixtures of oppositely charged rodlike polyelectrolytes.

Phase separation in salt-free symmetric mixtures of oppositely charged rodlike polyelectrolytes is studied using quasi-analytical calculations. Stability analyses for the isotropic-isotropic and the isotropic-nematic phase transitions in the mixtures are carried out and demonstrate that electrostatic interactions favor nematic ordering. Coexistence curves for the symmetric mixtures are also con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2010